
Automatic Test Case Reduction for OpenCL

Moritz Pflanzer
Imperial College London

moritz.pflanzer14@imperial.ac.uk

Alastair F. Donaldson
Imperial College London
afd@imperial.ac.uk

Andrei Lascu
Imperial College London

andrei.lascu10@imperial.ac.uk

ABSTRACT
We report on an extension to the C-Reduce tool, for au-
tomatic reduction of C test cases, to handle OpenCL pro-
grams. This enables an automated method for detecting
bugs in OpenCL compilers, by generating large random ker-
nels using the CLsmith generator, identifying kernels that
yield result differences across OpenCL platforms and opti-
misation levels, and using our novel extension to C-Reduce
to automatically reduce such kernels to minimal forms that
can be filed as bug reports. A major part of our effort in-
volved the design of ShadowKeeper, a new plugin for the
Oclgrind simulator that provides accurate detection of ac-
cesses to uninitialised data. We present experimental results
showing the effectiveness of our method for finding bugs in
a number of OpenCL compilers.

1. INTRODUCTION
Reliable OpenCL compilers are important, both to help

ensure that OpenCL software operates correctly on a given
platform, and also to fulfill the OpenCL promise of portabil-
ity, whereby an OpenCL application should exhibit function-
ally equivalent behaviour across a range of platforms that
implement the OpenCL specification. Compiler reliability
is a particular challenge in the context of OpenCL because
(a) OpenCL compilers must be optimizing (performance is
the main reason for using OpenCL in the first place), (b) the
OpenCL C kernel programming language is new and evolv-
ing, and (c) OpenCL C back-ends are required for many
target architectures, many of which are relatively new and
are also evolving.

Our recent work applying random program generation to
test OpenCL implementations [7] identified numerous bugs
in OpenCL compilers from all major vendors. In our test-
ing campaign, we applied two distinct techniques: random
differential testing (RDT), a fuzzing method popularised by
the Csmith tool [14], and equivalence modulo inputs test-
ing [6] (EMI), an instance of metamorphic testing [2] in the
context of compilers. We focus here on the RDT approach.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IWOCL ’16, April 19 - 21, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4338-1/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2909437.2909439

1 ulong *l_505[2];
2 int i, j;
3 for (i = 0; i < 2; i++)
4 l_505[i] = &p_1502->g_308[1][3];
5 for (p_1502->g_37 = (-24); (p_1502->g_37 == (-1)); ++p_1502

->g_37)
6 {
7 int **l_42 = &l_35[4][5];
8 (*l_42) = l_35[2][5];
9 }

10 barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
11 p_1502->tid = (({ uint ui1 = ((({ uint ui1 =
12 (get_linear_group_id()); uint ui2 = (7) ; (uint)
13 (((unsigned int)(ui1)) * ((unsigned int)(ui2)));}
14))); uint ui2 = (permutations[(({ uint ui1 =
15 (func_43(func_45(func_48((l_506 = (({ short si1 =
16 (0L); short si2 = ((((~0x6AF53593L) , func_55(((
17 p_1502->g_138[0] = ((int4)((((int8)(l_57.yyxxxyxy)
18).even <= ((int8)(((int2)((~((int4)(({ int4 si1 =
19 (((int4)((-8L), func_58(func_64(...

Figure 1: A small excerpt from a kernel generated
by CLsmith

Our RDT method builds on top of the Csmith technique:
we have built a tool, CLsmith,1 which generates random
OpenCL kernels that are, by construction, free from unde-
fined and nondeterministic behaviour, avoiding OpenCL C
constructs that allow variation in behaviour between imple-
mentations.2 Each generated kernel computes an integer
result, and should compute the same result no matter which
OpenCL platform is used for execution. A result mismatch
between OpenCL platforms, or with respect to the same
platform with compiler optimizations enabled vs. disabled,
is indicative of a possible compiler bug.

Random differential testing has been shown to be most
effective when large test programs are generated [14]. In-
tuitively this is because a large test program has a higher
chance of incorporating combinations of language features
that provoke compiler bugs compared with a smaller test
program. However, it is practically infeasible to understand
the root cause of a compiler bug from a large, randomly gen-
erated test program. To illustrate this, look at the code frag-
ment shown in Figure 1. This was taken from an OpenCL
kernel generated by CLsmith, comprising more than 1,800
lines of code with a file size of almost 197 kB. The kernel
was shown to cause a behavioural difference when executed

1https://github.com/ChrisLidbury/CLSmith, visited on
09/02/2016.
2In particular this eliminates floating-point arithmetic, e.g.
because denormal numbers may optionally be flushed to
zero [5].

1 struct S {
2 int a;
3 long b;
4 };
5

6 void g(struct S *p);
7

8 void h(void);
9

10 void f(struct S *p) {
11 g(p);
12 }
13

14 void g(struct S *p) {
15 p->b = 1;
16 h();
17 barrier(CLK_LOCAL_MEM_FENCE);
18 }
19

20 void h() {
21 barrier(CLK_LOCAL_MEM_FENCE);
22 }
23

24 kernel void entry(global ulong *result) {
25 struct S s = { 5, 0 };
26 f(&s);
27 result[get_global_id(0)] = s.b;
28 }

Figure 2: A kernel that triggers an OpenCL com-
piler bug

on an Intel Core i7 CPU, using the OpenCL SDK version
5.3 under Windows 10, with driver version 5.2.0.10094. On
this platform, the kernel yielded different results with opti-
mizations enabled vs. disabled. It should be apparent that
the behaviour of the original kernel (of which just a few lines
are shown in Figure 1) is not practically comprehensible to
a human. In particular, the fact that the original kernel
yields different results for two different OpenCL configura-
tions does not give any immediate information as to which
of the OpenCL configurations is buggy, nor any hint related
to the root cause of the bug.

Random differential testing for C compilers suffers from
precisely the same problem—that large test programs do not
directly shed light on compiler defects—and the C-Reduce
tool has been developed to aid in automatically reducing a
large C program to a smaller C program that still exposes a
compiler bug.3

Our contribution: In this paper we describe how we have
extended the C-Reduce tool to the context of OpenCL, pro-
viding an automated method for reducing OpenCL test cases
that induce compiler bugs. The main challenge in achieving
this has been the development of methods for detecting un-
defined behaviour in an OpenCL kernel. For this purpose we
have re-used existing tools, including the Clang Static Ana-
lyzer4 and Oclgrind [10],5 and have built ShadowKeeper, a
new plugin for Oclgrind that detects accesses to uninitial-
ized data with high-precision. The ShadowKeeper plugin
can be used independently from the rest of our framework.
We hope it will be useful to the OpenCL community as an

3In fact, C-Reduce is a general framework for reducing pro-
grams with respect to an “interestingness” criterion; in this
work we focus on C-Reduce as a method for reducing pro-
grams that induce compiler bugs.
4http://clang-analyzer.llvm.org , visited on 09/02/2016.
5https://github.com/jrprice/Oclgrind, visited on
09/02/2016.

1 struct S {
2 ushort a;
3 int **b;
4 ulong c;
5 };
6

7 void f(struct S * p);
8 void g(struct S * p);
9 void h(int * ip, struct S * p);

10

11 void f(struct S * p) {
12 g(p);
13 }
14

15 void g(struct S * p) {
16 barrier(CLK_LOCAL_MEM_FENCE);
17 h(*p->b, p);
18 }
19

20 void h(int * ip, struct S * p) {
21 p->a = p->c - get_group_id(0);
22 barrier(CLK_LOCAL_MEM_FENCE);
23 }
24

25 kernel void entry(global ulong *result) {
26 int t = 0;
27 int * u = &t;
28 volatile int z = 1;
29 struct S s = { 0, &u, z };
30 f(&s);
31 result[get_global_id(0)] = s.a;
32 }

Figure 3: Another illustration of a kernel that trig-
gers an OpenCL compiler bug

aid for kernel debugging.
To illustrate our contribution, Figure 2 shows a minimal

OpenCL kernel, derived from the original large test kernel
discussed above by first running our OpenCL extension to
C-Reduce, followed by further manual minimisation. It is
clear from Figure 2 that each work item executing the ker-
nel should set s.b to 1, due to executing p->b = 1 at line
15, where p is a pointer to s. However on the Intel plat-
form, when optimizations are disabled, the kernel computes
[1, 0] when executed by a single work group of two work
items. In this example, running the reduction tool was time-
consuming, requiring 26h46m of machine time (see Section 2
for further details); however, no human intervention was re-
quired during this process, and machine time is cheap in
comparison to engineer time. It took one of the authors
18m to further reduce the machine-reduced kernel down to
the minimal form shown in Figure 2.

In contrast, it took the same author 2h20m to reduce the
original 200 kB kernel to a minimal form without the aid
of C-Reduce. The resulting minimised program is shown in
Figure 3, and is slightly harder to understand. A work item
produces the final value of s.a as its result. At line 21, p->a
= p->c - get_group_id(0) assigns to s.a. At this point,
p->c is the same as s.c and has the value 1, thus for a work
item in work group 0 the statement should set s.a to 1. On
the Intel platform, with optimizations enabled, the kernel
produces the expected result when executed by two work
items in a single work group: [1, 1]. With optimizations dis-
abled, an erroneous result [1, 0] is produced. The structure
of the kernels in Figures 2 and 3 is similar, so it would ap-
pear that these issues stem from the same root cause. AD:
Should say that we have reported the problems to Intel.

Terminology: Throughout the paper we shall use CL-

Reduce to refer to our OpenCL extension to C-Reduce, to
allow us to refer unambiguously to the original C-Reduce
tool vs. our extension. However, as we explain in detail be-
low, CL-Reduce is simply the C-Reduce tool equipped with
an interestingness test specific to OpenCL. Our main con-
tribution has been to engineer this interestingness test (a
non-trivial task for OpenCL), after which we have been able
to re-use the C-Reduce framework almost unchanged.

Structure: In Section 2 we provide a rough guide to the
benefits brought by automatic test case reduction for OpenCL
by presenting the experiences of the paper authors reducing
OpenCL test cases with and without the help of CL-Reduce.
In Section 3 we explain the challenges we faced in extending
the C-Reduce method to apply in the context of OpenCL,
and in Section 4 we describe how we overcame these chal-
lenges in building CL-Reduce. We present a quantitative
experimental evaluation in Section 5, demonstrating the ef-
fectiveness of CL-Reduce for OpenCL kernel reduction on a
variety of platforms. We then provide an overview of related
work (Section 6) and conclude (Section 7).

2. CASE STUDY: HUMAN VS. MACHINE
REDUCTION FOR OPENCL

The aim of our work is to automate the tedious process of
manually reducing a large bug-inducing test case to a small
kernel that can be filed as a bug report.

Before discussing the technical details of how we achieve
this, we give an indication of the trade-offs associated with
manual vs. automatic reduction by reporting on the expe-
riences of two authors of this paper performing test case
reduction manually vs. automatically.

Table 1 details two OpenCL configurations used for our
case study: an NVIDIA GPU implementation and an In-
tel CPU implementation, referred to as Intel and NVIDIA
henceforth. We detail the device and the host CPU (in the
case of Intel these are the same), and provide information
about the OpenCL driver version, SDK and host operating
system.

Experimental setup.
Each of Donaldson and Pflanzer took one configuration,

Intel and NVIDIA, respectively, and used CLsmith [7] to find
two kernels for which their OpenCL configuration reported
a different result with optimizations enabled vs. disabled.
For each test case the author then (a) reduced the test case
to a minimal example manually, timing themselves in the
process, (b) used CL-Reduce to automatically reduce the
kernel, timing how long this process took, and (c) further
manually reduced the kernel output by CL-Reduce to turn
it into a minimal form, timing themselves in the process.

Results.
Table 2 summarises the results of our case study. Each

row of the table denotes an instance of our experiment for
a particular original test kernel. The author responsible for
handling the kernel is listed, with the associated configura-
tion (Config.). We show the size of the original test, indicat-
ing lines of code (LOC) and file size in bytes (bytes). The
size in bytes is arguably more interesting since a single line
of code in a randomly-generated kernel can be very large if
it involves a complex expression.

Under Manual we show the time (time) taken for the au-
thor to manually reduce the test case to a minimal example;

we show the size of the resulting minimal test (LOC and
bytes). By minimal we mean that the author was satisfied
that the correct result computed by the kernel was simple to
read from the reduced source code, and that no easy further
reduction opportunities would work. It is likely that with
continued manual effort the resulting kernels could be made
slightly smaller, and their size in bytes could be reduced
somewhat by renaming variables.

Under Automatic we show the time (time) taken by CL-
Reduce to automatically reduce the original test kernel, and
the size (LOC and bytes) of the reduced kernel computed
by CL-Reduce. The time shown here is wall-clock time,
and represents machine time only: no human intervention is
required during the reduction process.

Under Post-automatic we show the time (time) taken
for the author to further reduce (manually) the output gen-
erated by CL-Reduce to obtain a minimal test exposing the
compiler bug (with same caveats related to minimal as in
the case of Manual above); the size of the resulting minimal
test (LOC and bytes) is also shown.

Discussion.
Our experience is that both manual reduction and CL-

Reduce-based reduction followed by manual fine-tuning en-
abled large test kernels to be reduced to comparably-sized
and relatively small examples (in each case smaller than
1 kB). The manual effort associated with fine-tuning (post-
automatic reduction) was always significantly lower than the
time associated with a fully manual reduction.

On the Linux-based NVIDIA platform, CL-Reduce oper-
ated efficiently, taking less than 1.5 hours on each test case.
In contrast, the reduction times for the Windows-based Intel
platform was higher, with reduction taking more than a day
in one case. An analysis of the executions times of the dif-
ferent tasks during the reduction revealed that the process
creation time of a few milliseconds on Linux is around one
order of magnitude smaller than on Windows. Likely most
of the longer runtime can be attributed to this finding be-
cause every interestingness test itself and potentially also its
substasks are launched as independent processes. Although
automatic reduction can be slow, it can be parallelised: a
GPU vendor could use a farm of machines to reduce numer-
ous test cases in parallel, which will clearly be more cost-
effective than devoting a team of engineers to manual test
case reduction.

A feature of automatic reduction that our case study does
not highlight is the problem of duplicate bugs. It is well-
known that fuzzing techniques can generate tests that re-
peatedly trigger the same bug [3], and our experience with
manual reduction in our original CLsmith study [7] is that
we commonly spent hours reducing a test case by hand
only to home in on a minimal test virtually identical to
a previously-discovered test. It is clearly advantageous to
waste machine time, not human time, on such duplicate re-
duction efforts.

Threats to validity.
Our case study is intended merely to give a rough indica-

tion of the benefits and pitfalls associated with manual vs.
automatic reduction. Clearly the sample size of test kernels
that we reduced is too small to draw general conclusions, and
the speed at which the paper authors were able to reduce
kernels is related to their past experience doing so, which is
more than what an average software developer would have in

Short name Device Host CPU Driver version OpenCL SDK Operating system
Intel Core i7-6500U Core i7-6500U 2.5GHz 5.2.0.10094 Intel OpenCL SDK 5.3 Windows 10
NVIDIA GTX Titan Intel Xeon E5-2609 2.4GHz 343.22 CUDA SDK 6.5.12 Ubuntu 14.04.3 LS

Table 1: OpenCL configurations used for our case study

Author Config. Original test Manual Automatic Post-automatic
LOC bytes time LOC bytes time LOC bytes time LOC bytes

Donaldson Intel 1,858 201,338 2h20m 43 571 26h46m 86 1,917 18m 30 388
Donaldson Intel 979 99,553 1h01m 34 331 7h22m 78 1,977 15m 32 360
Pflanzer NVIDIA 914 54,290 54m 61 968 1h58m 59 1,218 5m 50 834
Pflanzer NVIDIA 1,267 135,553 1h16m 45 738 2h58m 72 1,759 32m 51 906

Table 2: Times and sizes associated with manual vs. automated reduction of kernels in our case study

this task, but is perhaps less than the experience an OpenCL
compiler developer would gain if they used random differ-
ential testing on a regular basis to strengthen their imple-
mentation. The speed of manual reduction is influenced sig-
nificantly by properties of the host machine for a particular
configurationAL: due to runtime?, and varies considerably
between the Windows and Linux operating systems.

In our experimental design we had each author first man-
ually reduce the kernel, then subsequently performed post-
automatic reduction on the output of CL-smith. As a re-
sult, the authors had some advantage in performing post-
automatic reduction, knowing some reduction steps that
were more likely to work well than others. In principle,
we could account for this by having authors swap config-
urations before undertaking post-automatic reduction; one
reason we did not do this is due to the issue of each author
having particular editing tools they prefer to use to reduce
kernels effectively, that are not portable across platforms.
For example, Donaldson uses Visual Studio for this purpose
(due to its brace matching functionality, with which he is
fluent), and would be slower at reducing a kernel on a Linux
setup using a different editor.

We now discuss the issues that had to be solved to design
and implement CL-Reduce.

3. BARRIERS TO USING C-REDUCE FOR
REDUCTION OF OPENCL KERNELS

We explain how the test case reduction process imple-
mented by C-Reduce works, in the context of C programs
(Section 3.1), and then outline the specific challenges that
had to be faced in lifting this method to the context of
OpenCL (Section 3.2).

3.1 Background on C-Reduce
The C-Reduce tool [11] implements a generalised notion of

delta debugging [15], whereby a program is reduced through
application of a variety of transformations. The reduction
process is specialised for reduction of C programs. Reduc-
tion is guided by a configurable interestingness test. For
example, to reduce a test case that causes a compiler inter-
nal error message, the interestingness test would be config-
ured to check that the compiler does indeed exit with the
particular error message. To reduce a test case that causes
compiled code to yield different results when a program is
compiled with vs. without optimisations, the interestingness
test would check that compilation succeeds in both optimi-
sation mode, and that the results output by the resulting

compiled binaries differ.

Program transformations for reduction.
C-Reduce uses three classes of transformations to reduce

programs.
The most basic transformations operate at the level of

source text, ignoring program structure. Some transfor-
mations modify contiguous regions of the source program,
for example changing the value of integer literals or remov-
ing parts of arithmetic expressions or text segments within
surrounding brackets. Other transformations make non-
contiguous changes like removing pairs of brackets without
deleting their contents.

The second class comprises a set of semantic aware source-
to-source transformations based on the abstract syntax tree
of the program. They cover a wide range of language-specific
changes, ranging from the removal of unused or statically
dead expressions and functions, through alteration of types,
to complex code refactorings. These transformations are
carefully designed to ensure that they do not introduce un-
defined or unspecified behaviour. All these transformations
are bundled in the clang delta helper tool (a component of
C-Reduce), which is written in C++ to make use of the
Clang AST parser.

The third class of transformations works at the level of
source code tokens, whereby tokens are deleted or modified
according to specific patterns. Examples include deleting
every other token, or one token in three, or reversing all
tokens in a specified range, enabling an expression such as
a < b to be transformed to b < a. To achieve these trans-
formations, C-Reduce incorporates a custom lexer for the C
language, clex.

Transformation cycle.
The reduction process of C-Reduce works as follows. The

size of the initial program is logged. C-Reduce then iterates
over all the available program transformations. A given pro-
gram transformation is repeatedly applied until the trans-
formation either leads to an error (due to the transforma-
tion tool crashing), or until the space of reductions for that
transformation is exhausted. As an example transformation
space: line-level removal uses a form of binary search, first
trying to remove the upper half of the program, then (if this
does not succeed) the lower half; if this in turn fails then
the process continues, halving the number of lines for which
removal is attempted in one transformation step. Once iter-
ation over all the program transformations has completed,
the size of the program is compared with the size that was
logged initially. If the sizes are the same, C-Reduce con-

cludes that it will not be able to reduce the program further,
and exits. Otherwise, the reduced program is treated as the
initial program, and the process repeats.

Interestingness tests.
Each time the source file is altered during the reduction

process, an interestingness test is applied. If the interesting-
ness test reports that the modified code is interesting, the
modified code is used as a basis for further transformations.
Otherwise the modified code is discarded and reduction con-
tinues from the state of the code before the latest reduction
step was applied.

When reducing a program that causes a wrong code com-
piler bug, it is important that the interestingness test checks
that undefined behaviours have not been introduced by the
reduction process, as well as checking that the compiled bi-
naries yield different results when executed. This is because
it is legitimate for a compiler at multiple optimization levels,
or for multiple distinct compilers, to produce binaries whose
execution yields different results when applied to a program
that exhibits undefined behaviour.

We now discuss the design of C-Reduce’s interestingness
test for wrong code bugs. The interestingness of a transfor-
mation is checked by first compiling the modified code with
one or more compilers, using flags that generate warnings
about possible undefined behaviours. The purpose of this is
to allow for a fast fail if the program is syntactically invalid,
or if the compilers warn about undefined behaviour. Next,
the Clang Static Analyzer6 and Frama-C 7 tools are applied
to identify deeper semantic issues that may indicate unde-
fined behaviours. If no such issues are identified, the code
is checked for dynamically invalid behaviour using KCC,8

an interpreter based on formal semantics, and the Valgrind9

instrumentation framework. Only if all these undefined be-
haviour checks are passed is the modified program checked
for a result mismatch with respect to the compiler(s) under
test. The importance of KCC and Valgrind is highlighted
by the authors of [11], who present experimental result in
which, without dynamic checks, C-Reduce converges on a
program that exhibits undefined behaviour in 29% of cases.

The cost of applying the interestingness test, and the rela-
tively high probability that a given transformation will intro-
duce undefined behaviour (leading to an interestingness test
failure), can lead to a slow reduction process. To mitigate
this, multiple program transformations and associated inter-
estingness tests can be executed in parallel. When an inter-
estingness test succeeds, concurrent transformations under
consideration can be killed, and a set of fresh transforma-
tions can be kicked off with respect to the reduced program.
As long as one parallel transformation and interestingness
test does not affect the performance of another (due to re-
source contention), this parallel approach cannot be slower
than the serial reduction.

3.2 OpenCL-specific challenges
Our aim was to extend C-Reduce to handle OpenCL ker-

nels, to enable reduction of large random kernels generated
by the CLsmith tool [7].

6http://clang-analyzer.llvm.org, visited on 12/02/2016.
7http://frama-c.com, visited on 12/02/2016.
8https://github.com/kframework/c-semantics, visited on
12/02/2016.
9http://valgrind.org, visited on 12/02/2016.

This presented two immediate challenges. First, a num-
ber of the tools that C-Reduce uses cannot be applied to
OpenCL; specifically GCC, Frama-C, KCC and Valgrind. In
contrast, we could re-use the Clang-based tools—the Clang
compiler itself, the Clang Static Analyser and clang delta—
because Clang provides a mature OpenCL front-end; we
could use all the language agnostic components directly, and
because of the relationship between C99 and OpenCL we
could also reuse the clex component. Among the tools that
do not support OpenCL, the most problematic cases were
GCC and Valgrind.

A number of diagnostic warnings that GCC generates, to
indicate possible undefined behaviours, are not reported by
Clang. In particular, GCC warns about reads from pos-
sibly uninitialised structs, while Clang does not. For CL-
smith generated programs this was particularly problematic:
as detailed in [7], CLsmith emits kernels that use a struct
with many fields to model the globally-scoped variables that
Csmith would generate for a C program (OpenCL does not
support globally-scoped variables prior to OpenCL 2.0). We
found that without knowledge of such uninitialised accesses,
our first version of CL-Reduce would produce small kernels
with undefined behaviour: these kernels would simply de-
clare a struct, not initialise the fields of the struct, and then
produce a result obtained from one of the uninitialised fields.

As discussed in Section 3.1, the dynamic checks provided
by Valgrind were found by the C-Reduce authors to be useful
in reducing the rate at which C-Reduce produced programs
exhibiting undefined behaviour; OpenCL is similar to C in
terms of operations that can exhibit undefined behaviour.

The second problem is that OpenCL offers a new set of
undefined behaviours that are not relevant to sequential
C programs: data races between work items, and barrier
divergence (where work items in the same work group do
not reach the same barrier statement). By construction, a
CLsmith-generated kernel is free from both of these unde-
fined behaviours. However, they can be introduced by the
reduction process and need to be checked for as part of the
interestingness test when reducing a wrong code bug.

To overcome the lack of diagnostic checks for OpenCL
that GCC and Valgrind provide in the case of C, and to
provide OpenCL specific diagnostic checks, we turned to
Oclgrind, a simulator for OpenCL applications [10]. Ini-
tially, we thought that Oclgrind would provide the necessary
checks out-of-the-box, as the tool already provided a number
of memory analysis capabilities. However, we had to refine
the capabilities of Oclgrind and add a new, state-of-the-art
plugin to detect access to uninitialised memory, in order to
make automated reduction of OpenCL kernels feasible.

We now discuss this process of lifting C-Reduce to the
context of OpenCL.

4. LIFTING C-REDUCE TO OPENCL
Recall that, for purposes of disambiguation, we use CL-

Reduce to refer to our OpenCL-aware extension to C-Reduce.
We first describe the design of an interestingness test suit-
able for minimising test cases that expose OpenCL wrong
code compiler bugs (Section 4.1). We then detail various
tooling issues that had to be solved to realise this interesting-
ness test (Section 4.2), and describe in detail a new plugin for
Oclgrind that we implemented to provide precise warnings
related to accessing uninitialized data (Section 4.3). During

the process of engineering our extension we made various im-
provements to the C-Reduce infrastructure, which we briefly
outline (Section 4.4).

4.1 The OpenCL interestingness test
Structurally, the OpenCL interestingness test is the same

as that used for reduction of C programs [14]. Lightweight
tools are first used in an attempt to fail fast, by quickly de-
tecting undefined behaviour introduced by a reduction step.
Slower, more thorough tools are then applied, and execution
of the actual test cases on the device under test is postponed
until last.

The objectives for an interestingness test are two-fold. A
test must be precise, reliably detecting undefined behaviour.
For OpenCL, the main issue here is to detect accesses to
undefined values, and data races between concurrently ex-
ecuting work items. A test must also be fast, to make the
time for automatic reduction practical. For instance, during
a reduction of an average-sized program (>100 kB), the in-
terestingness test typically has to be invoked around 30,000
times. To reduce the average runtime of the interesting-
ness test, all relevant tools are executed in increasing order
of expected runtime, with the test aborting as soon as a
tool marks the reduced program as invalid. This fast-failure
principle ensures that only successful reduction steps require
that all tools have been run.

Our OpenCL interestingness test first performs some hard-
coded checks, specialised towards test cases generated by
CLsmith. These check the structural integrity of test cases.
For instance, a CLsmith-generated kernel must include an
initial comment line that contains metadata on which the
host program that runs CLsmith-generated kernels depends;
if this line is removed we immediately reject the reduced
kernel as not interesting. For a reduction of kernels not
generated by CLsmith these checks can simply be deacti-
vated without affecting the validity of the reduction result.
Next, the Clang compiler is used to filter out syntactically
incorrect kernels. The warning messages of Clang, and of
the Clang Static Analyzer are checked for signs of unde-
fined behaviour. Both tools act as a replacement for the
GCC compiler that is used by C-Reduce, which empirically
shows a better detection rate for illegal uses of undefined
values but (as discussed in Section 3.2) does not include an
OpenCL front-end. In addition to indicators of undefined
behaviour, the static warnings are also searched for situa-
tions that might lead to dynamic failures, such as assigning
a non-zero integer value to a pointer, and situations that
may introduce non-determinism, e.g. comparing a pointer to
a non-zero integer value. This is important because (a) non-
determinism can lead to result differences between OpenCL
configurations applied to a given kernel, deviating from the
aim of identifying result differences that arise due to a com-
piler bug, and (b) nondeterminism may prevent a dynamic
analysis tool from detecting an undefined behaviour if the
nondeterministic choices resolve in a manner that leads to
an execution path that does not trigger any undefined be-
haviour, even though such behaviours are possible along
other program paths.

Limitations of the static tools mean that they may let
through kernels that contain undefined behaviour; for exam-
ple, a variable that is initialised only conditionally may not
be flagged by static analysis as possibly uninitialised. The
three most common sorts of undefined behaviour that of-

ten go undetected by static analysis are: usage of undefined
values (e.g. non-initialised values) and invalid pointers (e.g.
dereferencing a null-pointer), as well as array out-of-bounds
accesses. To identify these issues, we use Oclgrind for dy-
namic analysis, as an alternative to the Valgrind dynamic
analysis framework that is used for reduction of C programs
but is not compatible with OpenCL (Section 3.2). Oclgrind
also checks for data races and barrier divergence during ker-
nel execution, undefined behaviours in OpenCL that are not
relevant in the context of sequential C programs. To make
the interestingness test as fast as possible, Oclgrind stops as
soon as a warning of undefined behaviour is reported.

The drawback of using dynamic tools is that they actu-
ally have to execute the program. Moreover, the injection
of a custom memory management system AL: is this Shad-
owkeeper? if yes, maybe referenceadds additional overhead.
This slows down the validation process significantly, espe-
cially for large and high-dimensional OpenCL kernels. Nev-
ertheless, Oclgrind is an essential component of CL-Reduce
due to the limitations of static tools.

A kernel that passes all static checks and is deemed valid
by Oclgrind is executed on the two OpenCL configurations
that are being compared. In the experiments of this paper
we always executed a kernel using one OpenCL implemen-
tation, comparing results with and without optimisations,
but the same concept applies to comparing results across
two different OpenCL platforms.10 The interestingness test
succeeds if the kernel executes successfully on both configu-
rations and different results are generated. If the kernel fails
on either platform (e.g. due to a compiler crash or a runtime
exception) we deem the reduction attempt not interesting.
This is because our aim is to detect bugs where the compiler
silently produces wrong code, rather than arguably less seri-
ous cases where the compiler crashes or generates code that
leads to a crash. Of course, the interestingness test can be
configured to focus on such cases if desired.

Another important aspect of the interestingness tests is
that all tools are equipped with a fixed time-limit. This
helps to prevent situations in which the reduction process
would get stuck if one of the programs freezes. For the
dynamic executions of the kernels, the time-limit is vital to
cope with infinite loops that can be created by reduction
transformations.

4.2 Interestingness test tooling issues
We had to solve a number of immediate issues before we

could apply CL-Reduce to our CLsmith-generated kernels.
Clang invalid shufflevector operands. While ana-

lyzing the logs of an Oclgrind crash, we observed that the
root cause lay within Clang (specifically, running the kernel
without optimisations through Clang 3.6 on a 64-bit sys-
tem). Reducing the test kernel used to trigger the crash led
to the example of Figure 4, allowing us to pinpoint the root
cause of the crash: a specific code pattern where an existing
vector is reused rather than building a new one. More pre-
cisely, a combination of an extractelement instruction with
an index of 64-bits is generated alongside a shufflevector

instruction applied on a vector containing 32-bit undef val-
ues. This mismatch triggers the bug, which is caught when
building Clang with assertions enabled. We submitted a
patch to fix this issue, which was applied in the Clang 3.8

10The latter case is complicated somewhat if the two OpenCL
platforms under test are on different machines.

1 typedef unsigned int uint2 __attribute((ext_vector_type(2)))
;

2

3 void test1(void) {
4 (uint2)(((uint2)0).s0, 0);
5 }

Figure 4: Reduced OpenCL kernel used to trigger
an Oclgrind crash with the warning “Invalid shuf-
flevector operands!”. The root cause was due to a
bug with the shufflevector instruction in Clang.

1 struct S0 {
2 ulong f;
3 uint a[1];
4 };

Figure 5: Struct declaration that could trick
Oclgrind by reading uninitialized memory due to the
difference in size between the elements of the struct.

release and back-ported to Clang 3.7.
Oclgrind index out-of-bounds check. We observed a

specific instance where Oclgrind would not generate a warn-
ing for an invalid memory read. By declaring a struct with
elements of varying sizes (illustrated in Figure 5; ulong and
uint have sizes 8 and 4 bytes, respectively, in OpenCL), ac-
cessing the array field a at index 1 would not be flagged as
in issue by Oclgrind. The root cause was that the mismatch
between type sizes led to four padding bytes being added
to the struct; Oclgrind erroneously regarded these bytes as
part of the struct, in turn regarding an access to a[1] as
in-bounds. We submitted a patch for this issue, which was
accepted, but later had to be adapted by us to cater for the
fact that it is legitimate in C for a pointer to point one ele-
ment past the end of an array, as long as the pointer is not
dereferenced.

Oclgrind custom warning messages. Due to using
Oclgrind as a dynamic analysis tool, we found the current
warning messages not expressive enough for our needs. We
decided on reworking Oclgrind’s diagnostics system due to
two considerations: simply ignoring produced warning mes-
sages would mean extra useless runtime for Oclgrind in the
framework and there is a hard limit on the number of mes-
sages produced. The latter means that we might miss mean-
ingful diagnostics. We thus extended the existing types of
diagnostics with targeted ones for specific issues (e.g. array
out-of-bounds errors, uninitialized value warning, etc.). As
such, we can filter the diagnostics as per the requirements
of the analysis. In addition, Oclgrind does not stop the
execution even if an error has been detected. In order to
accelerate our interestingness test, we added a new option
to stop execution after a user-defined number of errors have
been produced.

4.3 The ShadowKeeper Plugin
As mentioned in Section 4.1, in CL-Reduce we had to

replace Valgrind with Oclgrind, the latter being especially
developed for the runtime instrumentation of OpenCL pro-
grams. In contrast to Valgrind, Oclgrind originally included
only limited capabilities for detecting undefined behaviour
arising from accesses to uninitialised values. Initially, Oclgrind
would monitor all interactions with the memory system and
emit a warning anytime an undefined value was involved

in a memory operation. This caused false positives in cases
where uninitialised values were copied around, without actu-
ally influencing program behaviour. In particular, we found
that when copying between struct data, Oclgrind would
warn about uninitialised accesses to padding bytes (which,
by definition, cannot be initialised by assigning to fields of
a struct).

To obtain reliable analyses for the interestingness tests
it was necessary to extend Oclgrind with a more precise
plugin. The resulting ShadowKeeper plugin was a key piece
of our CL-Reduce framework, while improving the general
functionality of Oclgrind by helping developers to write valid
or debug invalid OpenCL programs. As a result, it has been
merged into the main project and replaces the old plugin.

The internal mechanics of ShadowKeeper are derived from
Valgrind’s Memcheck plugin [12] and Clang’s MemorySan-
itizer [13]. Both tools use the term shadow as a metaphor
for the validity state of a memory location or register dur-
ing program execution. The authors of Valgrind’s Memcheck
plugin identify three general requirements which have to be
met in order to fully support shadow values [8]. The three
categories are described as: monitoring the current state of a
program (registers and memory), instrumenting instructions
which read or write memory and instrumenting instructions
which allocate or deallocate memory. A reliable detection
of undefined values is only possible if all three categories
are covered.11 While the effects of a less precise handling
of shadow registers and memory are well-defined, the con-
sequences of only a partial coverage of all operations are
hard to confine. For instance, if shadow values were only
accurate up to the scale of bytes it would be clear that ev-
ery operation involving bit operations could lead to wrong
detection results. In contrast, any instruction, system call
or external function has the potential to perform memory
operations. As long as the operation is not covered with a
corresponding operation on the shadow memory both states
will diverge and result in an incorrect analysis.

We now summarise the principles behind Valgrind’s Mem-
check and Clang’s MemorySanitizer, after which we present
the design of ShadowKeeper in detail.

4.3.1 Valgrind’s Memcheck
Valgrind’s Memcheck plugin is able to detect “invalid” us-

ages of undefined values such as uninitialised variables with
bit-level precision by instrumenting programs according to
the disassemble-and-resynthesise (D&R) paradigm. This in-
cludes partially initialised bytes, such as bit fields inside
structs. To achieve this precision, every bit of data has to
be shadowed with an additional definedness bit. Internally,
these shadow values are referred to as V bits (validity bits).
If a V bit is set to zero, the corresponding data bit is con-
sidered to be defined, whereas a value of one for the V bit
specifies an undefined data value.

Data registers are shadowed through a simple one-to-one
mapping to shadow registers. Both data registers and shadow
registers can be modified through the instructions provided
by the intermediate representation. This makes it easy to
keep the actual data synchronised with the shadow values.

11“Reliable” has to be set in contrast to “perfect”. A perfect
definedness check would be equivalent to solving the Halting
problem [8] therefore the goal has to be to build a reliable
method which emits as few false positives and false negatives
as possible.

Additionally, a large amount of memory has to be moni-
tored. To be able to do this efficiently a two-level mapping
scheme is used.12 The first level table (PM) divides the
32 bit address space into 65,536 blocks. Every entry in the
table points to a secondary table (SM) containing 65,536
entries to shadow 64 kB of memory. Space in the second
level table is allocated on demand (copy-on-write) and deal-
located together with the data values. Therefore, not all
entries in the first level table are set. At program startup,
everything, aside from literals and read-only and mapped
memory, is considered as undefined and the corresponding
shadows are thus set to all one.

In addition, Valgrind’s Memcheck is able to achieve a total
coverage of dynamically linked libraries. For each instruc-
tion a trade-off between accuracy of the shadow propaga-
tion and the performance of the shadow operation has to be
found. For most operations, the plugin puts emphasis on the
accuracy and sacrifices efficiency. For example, arithmetic
operations shadow the effects of carry chains, as opposed to
the faster approach of invalidating the complete results as
soon as one operand is (partially) undefined.

Another design decision is when to emit warning messages
about invalid uses of undefined values. Most of the time the
Memcheck plugin propagates undefined values lazily through
the shadow operations producing warnings only at a few crit-
ical check points. An operation is considered as critical if
it alters the observable behaviour of the program. In [12],
four distinct groups of such operations are defined. The
first two groups include operations that change the control
flow, e.g. branch instructions and conditional moves. The
third group comprises memory operations where the address
operand might be undefined. Finally, system calls form the
fourth group. After a warning has been generated the un-
defined values are explicitly set as defined to prevent chains
of warnings from the same source.

4.3.2 Clang’s MemorySanitizer
The main difference to Valgrind’s Memcheck plugin is that

Clang’s MemorySanitizer uses static compile time instru-
mentation instead of the D&R paradigm. Once the pro-
gram is compiled with MemorySanitizer support, the result-
ing executable contains all necessary instructions to detect
undefined values. The fact that the shadow operations are
directly injected into the LLVM IR of the application makes
it unnecessary for MemorySanitizer to shadow registers ex-
plicitly. The instructions themselves represent the tempo-
rary values and are automatically assigned a unique identi-
fier.

Similar to Memcheck, memory is shadowed with bit-level
accuracy, but a simpler one-to-one mapping between appli-
cation data and shadow bits is applied [13]. This comes
at the cost of higher memory consumption, but simplifies
the address computation. In fact the shadow address is de-
rived by flipping one bit in the original address such that
all shadow addresses are projected into a commonly unused
address space. Due to preferring speed over accuracy, most
operations that perform shadow propagation are less precise
than the corresponding functions in Memcheck. Moreover,
some of the operations even allow false negatives to occur if
this has the potential to greatly improve the performance.
For instance, an addition is approximated through a simple

12The actual implementation uses an additional compression
scheme to save further memory.

ShadowKeeper

Plugin APIShadowContext

ShadowMemory
(global)

ShadowValues
(global)

Shadow
WorkItems

Shadow
WorkGroups

MemoryPool
(global)

WorkSpace
(thread_local)

ShadowMemory
(private)

ShadowValues
(private)

ShadowMemory
(local)

MemoryPool

Figure 6: The hierarchical design of ShadowKeeper

bitwise OR instruction of both operands. This only guaran-
tees that (a) the result is defined if both operands are defined
and (b) that the result cannot be valid if either operand is
(partially) undefined. However, the actual bits that are un-
defined after the addition might not be correctly shadowed,
as the carry propagation is not modelled.

MemorySanitizer is generally unable to achieve full cov-
erage of all functions if external libraries are involved, as it
would require that all libraries have been instrumented with
MemorySanitizer instructions. To mitigate this issue, Mem-
orySanitizer provides wrapper functions for some widely used
and hard to compile libraries (e.g. libc) which define the
side effects of each function and change the shadow values
accordingly.

4.3.3 ShadowKeeper
Conceptually, ShadowKeeper lies between Memcheck and

MemorySanitizer. MemorySanitizer is entirely trimmed for
efficiency, accepting even loss in accuracy for better perfor-
mance. Valgrind’s Memcheck aims to be as precise as pos-
sible and optimises only for efficiency if it does not have a
major impact on accuracy. The goal of ShadowKeeper is to
make the detection of undefined values as complete as pos-
sible but not necessarily at a high level of precision. This
allows to approximate the propagation of undefined values
to improve the performance though the approximations al-
ways have to be conservative such they do not decrease the
“undefinedness” of any value.

We designed ShadowKeeper with its application in test
case reduction and the resulting requirement in a small run-
time in mind; thus we approximate propagation of undefined
values for the sake of performance, being conservative such
that we do not decrease the “undefinedness”. For instance
the shadow operation for the add instruction validates only
the state of the operands and returns an appropriate re-
sult.13

The plugin follows the spirit of Oclgrind, having been de-
signed with maintainability and modularity in mind, even
though this introduces some overhead in terms of perfor-
mance. The existing plugin system provided an excellent
staring point to integrate the new ShadowKeeper plugin
into the existing framework. Figure 6 provides a high-level
overview over the different components.

The design is closely tied to the architecture of Oclgrind,
as every memory location and intermediate value has to be

13A bit level accurate shadow computation for arithmetic
instructions can be extreme costly because of the effects of
carry bits.

shadowed to track its definedness. As with every Oclgrind
plugin, the main class acts as controller that intercepts the
action callbacks e.g. workItemBegin(const WorkItem *workItem), be-
fore, during and after the kernel execution. It further sets up
various data structures that help to maintain and track the
definedness of all values. Non-global resources are defined
as thread local to make lock free accesses possible. Solely
global resources have to be guarded by locks.

As with the other tools, the abstract concept of shadow
data is divided into two categories. Shadow memory mir-
rors the address space of the original kernel and shadow
values represent the validity of global and private variables
in the kernel. ShadowKeeper creates a simple one-to-one
mapping with bit-level accuracy between the address spaces
of the kernel and the shadow address spaces. The only ex-
ception is the constant address space, which is currently not
mapped. The reason behind this decision is that in OpenCL
kernels all constants have to be statically initialised, hence
they cannot contain undefined values. Therefore it is faster
to generate a new clean shadow for each access to constant
memory instead of performing a costly lookup. Further, gen-
erating the shadow values on demand saves space. Each of
the other three address spaces (global, local, private) is rep-
resented by a separate map which uses the original address
of the memory access as key. Using separate maps has the
advantage that the lookup of a particular value is likely to
be faster, and prevents clashes between addresses of different
address spaces.

To reduce the memory overhead, the implementation uses
sparse maps into which memory buffer objects are inserted
every time an allocation is performed. The use of a copy-
on-write mechanism similar to the one in Valgrind’s Mem-
check plugin turned out to be inefficient in combination with
sparse maps. In contrast, deallocations are handled lazily
and are only performed on demand. The main reason is
that tracking deallocations precisely would introduce a huge
amount of extra work because there is no explicit instruc-
tion for deallocations in the LLVM IR. An object is simply
considered as deallocated if its lifetime ends (e.g. the scope
of the allocation is exited).

In general all allocated memory is assumed to be unde-
fined and the shadow memory in consequently filled with
special “poisoned” values. However, since ShadowKeeper
cannot determine the validity of the data which the host
program writes to the memory, the default is to mark it as
defined. Therefore the shadow memory for buffers that are
mapped for writing and the regions that are written by the
host program are filled with clean shadow values. This bears
the risk of missing some undefined values, but the alternative
(marking global memory as poisoned after every interaction
with the host application) would make the plugin unusable
for OpenCL programs which use global memory not solely
as output buffer.

The second category AL: I don’t see the first is formed by
the intermediate results during the execution of the OpenCL
program. They are also shadowed with bit-level precision
and stored in a sparse map. Instead of the address, the
signature of the original LLVM IR instruction is used as
key. The handling of variables in global scope, i.e. constants
and pointers to the local address space, is straightforward.
They are stored before the actual execution of the kernel is
started, exist throughout the entire execution of the kernel
and can be accessed from every point in the plugin. On the

ShadowValues
ShadowFrame

ShadowFrame

ShadowFrame

... Call instruction
Shadow map

Call instruction
Shadow map

Call instruction
Shadow map

Figure 7: The structure of shadow values

other hand, the management of variables in private scope
requires more effort than a single map. The lifetime of the
temporary variables is important, as shadow values from dif-
ferent function scopes might interfere with each other. The
solution implemented in ShadowKeeper includes an explicit
construction of a new “ShadowFrame” each time a function
is called and a return to the old frame when the control flow
leaves the function.

In addition to the storage of the shadow values, a shadow
operation had to be defined for each of the 48 LLVM IR in-
structions and 94 built-in functions that Oclgrind currently
supports. Instead of computing the result shadow with bit-
level precision, only the shadows of all operands are checked
and if either is (partially) poisoned the entire result is con-
sidered poisoned. This has the great advantage of being
faster than an exact computation of the result shadow. Fur-
thermore, it cannot make a value “less” poisoned and does
not sacrifice much accuracy.14

Warnings about undefined values are only emitted if the
values would change the observable behaviour of the pro-
gram. That is, if undefined values are written to memory of
a non-private address space or if the control flow depends on
undefined values. Further, warnings are generated if unde-
fined values are passed as arguments to external functions, if
undefined values are used as index operand in instructions.
Lastly, the addresses of all memory loads and stores are di-
rectly checked for their definedness. Without these address
checks, undefined values could remain unnoticed (for exam-
ple, a load from a poisoned access luckily hits a valid address
and a clean value is loaded). The objective to emit warn-
ings only when strictly necessary has been set to leverage
the reduction processed by allowing undefined intermediate
states.

Another important aspect while designing ShadowKeeper
has been to guarantee thread-safety. Only then Oclgrind
is able to simulate multiple work items at the same time
by running them in different threads. Serialised execution
would have rendered ShadowKeeper useless for large ker-
nels. A major concern in terms of thread safety are data
structures used to store the shadow data. First is the map
storing all global shadow values. The only writing accesses
to this map are before the actual execution. During exe-
cution, only reading accesses can happen which do not in-
troduce data races. Moreover, for the shadow memory of
non-local address spaces, although they are accessible from
concurrent threads, no locking mechanism is needed. Any
concurrent access to the same address would correspond to
a data race on the actual values because the shadow opera-
tions are always synchronised to the real operations. Since

14Actually there has been not a single false positive warn-
ing since the old plugin has been exchanged with Shad-
owKeeper.

data races are forbidden by the OpenCL standard, Shad-
owKeeper does not make any guarantees for kernels that
exhibit this kind of undefined behaviour.15 The concurrent
access to different addresses in the same map is enabled by
storing the shadow memory in a buffer separate from the ac-
tual map and inserting only a pointer to the buffer into the
map. The only exception from the lock free implementation
are atomic operations which affect global data structures.
Here it is not responsibility of the kernel to prevent data
races but the implementation of the atomic operations must
handle concurrent accesses without introducing undefined
behaviour. Every atomic shadow operation which writes to
the global address space acquires a lock prior to reading
the old shadow value and releases it after writing the new
shadow value. Additionally, to reduce the contention multi-
ple locks are provided such that each operations locks only
a part of the address space.

4.4 Improvements to C-Reduce
To prevent undefined behaviour in OpenCL kernels, a

strict compliance with the C99 standard is necessary. This
revealed some edge cases in which C-Reduce’s transforma-
tions produced non strictly conforming results and some
transformation have been optimised to produce smaller test
cases. Further, minor technical issues with the processing
of OpenCL source files have been addressed. Exemplary
some of the issues with the empty-struct-to-int transfor-
mation are discussed and the proposed solution is briefly
outlined. The full details, the changes to the remove-unused
-function and the remove-unused-field transformations
as well as the solution how OpenCL source files can be han-
dled can be found in [9].

The empty-struct-to-int transformation removes struct
declarations and replaces all usages of the struct type with
type int. Despite its name the transformation does not
only remove structs without any member but also structs
with at most one unreferenced member. This is important
as the behaviour for structs without any named member is
undefined.16 Thus test cases with empty structs would be
rejected by the interestingness test and the struct declara-
tion could only be removed by the simple delta-reduction
steps.

Completely empty structs cannot have an initialiser list
when a variable of the struct type is defined. In this case
the transformation is easy as it is possible to just replace
every occurrence of the struct type with an integral type.
However, structs with at least one named member can have
an initialiser list even if the member itself is unreferenced.
Moreover, initialiser lists can be nested for members and
variables of array or struct type (Figure 8). The existing
implementation of C-Reduce did not consider these cases
and left the initialiser list unmodified. But again such a
transformation result would have to be rejected in the in-
terestingness test since according to the C99 standard “[n]o
initializer shall attempt to provide a value for an object not
contained within the entity being initialized” [4].

In order to solve the problem all structs are visited recur-
sively and all usages of the rewritten struct are collected in a
new tree-like data structure (Figure 9). Each leaf node rep-
resents an instance of the struct itself while the inner nodes
represent structs for which one of its (recursive) members is

15Oclgrind includes a separate plugin for data race detection.
16Empty structs are a GNU C extension of the C99 standard.

of the changed struct type. This information is essential as
also the initialiser lists of these “surrounding” structs have
to be altered. Once all occurrences have been determined
the specific initialiser lists are simply replaced with a zero
value.

5. EXPERIMENTAL EVALUATION
We evaluate two properties of our CL-reduce implemen-

tation: efficiency and robustness. We evaluate robustness
by whether a completed reduction is free from undefined
behaviour and still triggers a bug. Note that it might be
the case that a bug observed in a reduced kernel is not the
same as the bug in the original version. For efficiency, we
consider the primary metric being the runtime per reduc-
tion. Aside from this, we also look at the final size of the
reduced program compared to the original, as well as the
success rate of individual reduction passes. Finally, we com-
pare the runtime of the new ShadowKeeper plugin against
Oclgrind without any plugins and with the original unde-
fined value detection plugin, as well as its effectiveness at
detecting uninitialised values.

5.1 Experimental setup
The experimental campaign was carried out on 5 different

OpenCL devices over 3 different machines. The names of
all devices are anonymised, as we are not allowed to disclose
results for some of the devices. These devices are differ-
ent than the ones used in Section 2. From an initial pool
of 35,750 CLsmith-generated kernels, we selected 127 which
would yield different results between an optimised and an
unoptimised execution. For these selected kernels, a total of
272 automatic reductions have been performed, as some of
the kernels presented wrong-code bugs on multiple configu-
rations (Table 3). However, a number of these kernels were
found to contain undefined behaviours (“Failure” column) or
data races (“Race” column). We have removed them from
further evaluation. In addition, we found one test causing a
compiler crash (“Crash” column) after reduction. The “Suc-
cess”column shows the number of reductions performed that
ended with a kernel free of undefined behaviours.

5.2 Reduction results
Of the 272 automatic reductions that we have attempted,

189 have been successful, meaning a 69% success rate. We
observed an average reduction in size of 99.2%, meaning 844
bytes after automatic reduction (varying from 387 bytes to
roughly 2000 bytes). The practical question is whether this
is a simple enough test case to report to compiler engineers.
While this is a difficult question to answer in general, the
developers of GCC recommend reporting test cases of under
30 lines of code.17 We found that this is generally the case
for our reduced kernels, but we can further minimize the
tests manually with little effort. In general, we recommend
applying a final manual reduction pass, as that can help
making the final test case simpler to understand and more
readable. Our experience shows that 15 minutes are enough
to apply some complex, hard to automate reductions.

The average runtime of the reductions was roughly 6 hours
when running sequential interestingness tests, going down
to an average of 1.7 hours for executing 4 in parallel. An

17See https://gcc.gnu.org/bugs/minimize.html, visited on
29/08/2015.

1 struct S0 {
2 int a[5];
3 };
4

5 struct S0 s = {{1,2,3,4,5}};
6 struct S0 as[2] = {{1}, {6,7}};

(a) Test case

1

2

3

4

5 int s = 0;
6 int as[2] = {0, 0};

(b) Correct transform

1

2

3

4

5 int s = {{1,2,3,4,5}};
6 int as[2] = {{1}, {6,7}};

(c) Actual transform

Figure 8: Example of the empty-struct-to-int transformation

1 struct S0 {
2 int a[3];
3 };
4

5 struct S1 {
6 int b;
7 struct S0 s0;
8 }
9

10 struct S0 s0 = {1,2,3};
11 struct S1 s1 = {0, {1,2,3}}

S00

0 S1 S01

Figure 9: Example of the collected type usage infor-
mation

overview of the reduction times for the sequential case over
all the 189 tests can be seen in Figure 10. Our result for
executing 4 interestingness tests in parallel is similar to that
obtained in [14]. However, this is after a simple manual ad-
justment, where the runtime parameters of the kernel were
set to a single work-unit. Without this optimization, we no-
ticed a 30% increase in runtime. In order to further reduce
the runtime, we attempted multiple powers of two for the
number of parallel interestingness tests and found that run-
ning 4 in parallel is ideal, having greatly diminished runtime
improvements if going over this value (see Figure 11).

Regarding the reduced kernels we deemed as failing due
to presenting undefined behaviours, upon manual inspec-
tion, we observed that the interestingness tests were not
checking for the occurrence of those particular undefined be-
haviours. This shows that writing the interestingness tests
is not a trivial process, due to the multitude of possible un-
defined behaviours that have to be taken into consideration
and checked for. In addition, checking for more undefined
behaviours reduces the number of possible reductions that
can be applied. Thus, we opted for a demand-driven ap-
proach to implementing undefined behaviour checks in the
interestingness tests. In addition, there was an instance of
a wrong-code test being reduced to a program triggering a
compiler crash. This is due to a phenomenon known as bug
slippage [3], where one fuzzed program could contain mul-
tiple bugs, but reduction homes in on a single one, which
might be different than the bug observed originally.

5.3 Evaluation of uninitialised value detection
As the ShadowKeeper plugin for Oclgrind is a great pre-

cision improvement for Oclgrind at the cost of performance,
we also evaluate how effective it is, both in terms of runtime
and uninitialized value detection.

For runtime, we compare executing Oclgrind with our
ShadowKeeper plugin against default Oclgrind, as a base-
line, and against Oclgrind with the previous uninitialised
value plugin enabled. We run 1,000 kernels on each of the
three different machines mentioned in Section 5.1, setting
a hard timeout of 120 seconds. Using this limit, default

Configuration Success Crash Race Failure
dev-a basic n1 24 0 — 12
dev-a basic n4 20 0 — 9
dev-a basic n8 20 0 — 13
dev-b vectors n1 5 0 — 1
dev-b ar n1 15 1 0 4
dev-b itc n1 18 0 0 5
dev-b atomics n1 8 0 5 4
dev-b divergence n1 20 0 — 5
dev-c basic n8 6 0 — 0
dev-d basic n8 28 0 — 14
dev-e basic n1 3 0 — 2
dev-e itc n1 7 0 2 4
dev-a basic n1∗ 15 0 — 2

Table 3: Overview of the experimental results over
5 different OpenCL devices

Oclgrind timeouts in 35% of the cases, compared to 65%
with either plugin enabled. We observe an expected increase
in runtime when using ShadowKeeper, with an average fac-
tor of 4.6 compared to the baseline and 1.3 compared to the
old plugin. We note the very slight increase in runtime com-
pared to the old plugin. However, compared to the tools
that have inspired ShadowKeeper, Valgrind’s Memcheck is
four times slower (20 times slowdown compared to original
runtime), while Clang’s MemorySanitizer is slightly faster
(3 times slowdown). Considering that MemorySanitizer ex-
ecutes the programs directly through the operating system,
as opposed to Oclgrind having to simulate them, we consider
ShadowKeeper competitive in terms of runtime.

The main purpose of developing the plugin was to improve
upon the high rate of false positives the previous plugin pre-
sented. During our tests, we have not observed any instance
of ShadowKeeper reporting a false positive bug. However,
we have observed situations where ShadowKeeper failed to
identify uninitialised values, such as a load from an unde-
fined address. While this particular issue has been fixed
in a later version of Oclgrind, we believe that even a per-
fect plugin would find itself in situations where it could not
identify certain uninitialised values. This is due to the fact
that Oclgrind uses Clang to compile an OpenCL kernel into
LLVM IR. If the original kernel was presenting some unde-
fined behaviour, it is not the case that the resulting LLVM
IR would also contain it. As the ShadowKeeper plugin anal-
yses the LLVM IR, as opposed to the original OpenCL ker-
nel, no matter how good our analysis, we will miss those
undefined behaviours that are not present in the LLVM IR
translation of the kernel.

6. RELATED WORK
The CLsmith tool that we use to generate random ker-

0 5 10 15 20 25 30

Empirical
CDF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 te

st
-c

as
es

Reduction time [h]
35 40

Figure 10: CDF plot of the runtime for the 189
tests reduced with our CL-Reduce framework.

Sequential tests 2 parallel tests 8 parallel tests
0

1

2

3

4

5

6

Re
du

ct
io

n
tim

e
[h

] 7

8

9

4 parallel tests

5.86 hours

2.11 hours 1.68 hours 1.66 hours

Figure 11: Runtime of a reduction plotted against
number of interestingness tests in parallel.

nels [7] is built on top of the Csmith generator for C pro-
grams [14]. In addition, in prior work we also investigated
the use of equivalence modulo inputs testing [6], a meta-
morphic testing technique [2], for finding OpenCL compiler
bugs. The EMI method we proposed in [7] involved inject-
ing dead-by-construction code into an OpenCL kernel, using
an opaque predicate to ensure that the compiler cannot de-
duce that the code is dead. This method yields a simple
approach to test case reduction, because injected dead code
can be eliminated without concern for undefined behaviour
(being dead, the code in question cannot trigger undefined
behaviour at runtime). An open problem for future investi-
gation is whether random kernels generated by CLsmith and
reduced by CL-reduce, or real-world kernels injected with
dead-by-construction code and reduced as described above,
yield more useful bug reports for compiler developers.

Oclgrind provides a form of dynamic analysis for OpenCL
kernels via simulation. In contrast, the GPUVerify tool pro-
vides static warnings about data races and barrier diver-
gence [1]. In principle we could incorporate GPUVerify into
the interestingness test of CL-Reduce, but have found that
GPUVerify does not yet scale well to kernels of the size pro-
duced by CLsmith.

For C compilers, the Csmith and C-Reduce tools provide
a way to generate a large set of small progams that trigger
compiler bugs. A remaining problem is that of duplicate
bugs, where many reduced programs trigger bugs arising
from a common root cause. Methods for automatically rank-
ing reduced test cases in an attempt to prioritise programs
that trigger a diverse range of bugs have been proposed [3].
Our OpenCL extension to C-Reduce paves the way for in-
vestigating these methods in the context of OpenCL.

7. CONCLUSIONS AND FUTURE WORK
We have presented the design and implementation of a

novel extension to the C-Reduce test case reduction frame-
work that handles OpenCL kernels. A by-product of this
work is ShadowKeeper, a new plugin for the Oclgrind simu-
lator that detects uninitialised memory accesses for OpenCL
kernels. Our experiments and case study using CL-Reduce
to automatically reduce large OpenCL test cases show that
the method can be useful as an aid to finding small kernels
that trigger compiler bugs. Open avenues for future work
include adding further plugins to Oclgrind to detecting addi-
tional kinds of undefined behaviour, and investigating meth-
ods for ranking reduced bugs in order of priority.

Acknowledgements
We are grateful to James Price for support related to Oclgrind,
to the developers of C-Reduce for accepting our contribu-
tions to the C-Reduce framework, and to the Clang develop-
ers for reviewing a submitted patch arising from this project.

8. REFERENCES
[1] A. Betts, N. Chong, A. F. Donaldson, J. Ketema,

S. Qadeer, P. Thomson, and J. Wickerson. The design
and implementation of a verification technique for
GPU kernels. ACM Trans. Program. Lang. Syst.,
37(3):10, 2015.

[2] T. Y. Chen, S. C. Cheung, and S. M. Yiu.
Metamorphic testing: a new approach for generating
next test cases. Technical Report HKUST-CS98-01,
Department of Computer Science, Hong Kong
University of Science and Technology, 1998.

[3] Y. Chen, A. Groce, C. Zhang, W. Wong, X. Fern,
E. Eide, and J. Regehr. Taming compiler fuzzers. In
PLDI, 2013.

[4] International Organization for Standardization.
ISO/IEC 9899:1999, Programming languages – C,
1999.

[5] Khronos Group. The OpenCL C specification, v2.0.

[6] V. Le, M. Afshari, and Z. Su. Compiler validation via
equivalence modulo inputs. In PLDI, 2014.

[7] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson.
Many-core compiler fuzzing. In PLDI, 2015.

[8] N. Nethercote and J. Seward. How to shadow every
byte of memory used by a program. In VEE, 2007.

[9] M. Pflanzer. Automatic test case reduction of
randomly generated OpenCL kernels. Master’s thesis,
Imperial College London, 2015.
http://www.doc.ic.ac.uk/˜afd/homepages/papers/
pdfs/2015/PflanzerThesis.pdf.

[10] J. Price and S. McIntosh-Smith. Oclgrind: An
extensible opencl device simulator. In IWOCL, 2015.

[11] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and
X. Yang. Test-case reduction for C compiler bugs. In
PLDI, 2012.

[12] J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In USENIX
Annual Technical Conference, 2005.

[13] E. Stepanov and K. Serebryany. MemorySanitizer:
Fast detector of uninitialized memory use in C++. In
CGO, 2015.

[14] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding
and understanding bugs in C compilers. In PLDI,

2011.

[15] A. Zeller. Why Programs Fail: A Guide to Systematic
Debugging. Morgan Kaufmann, 2005.

